
transistor DRAM cell, since higher capacitance was
required to reduce the soft errors due to noise electrons
generated by alpha particles from the package materials
of the chip, cosmic rays and other noise sources [44]; a
dual dielectric for the charge storage capacitor, utilizing
the higher dielectric constant of silicon nitride formed
by chemical vapor deposition (CVD) on thermally
grown silicon dioxide to enhance the composite storage
medium's dielectric constant and to reduce pinholes in
the thinner silicon dioxide (not all DRAM
manufacturers utilized this option); plasma etch
technology to produce steeper walls or trenches to
reduce tapered structures which take up silicon real
estate (chip area) and an optical wafer stepper to reduce
the design rules from three to less than two microns.
Rideout [296] and Chatterjee [299] have also reviewed
these DRAM advances.

The 256K DRAM further reduced the design rule
to the 1.5-2 |nm range and introduced refractory metal
silicides to reduce the interconnect wiring delay [44]
and aluminum metal for double and triple polysilicon
technologies. The M-bit DRAM era, initially a shrink
of the original 2 u.m 256K DRAM design, approached
1 |iim design rules (see Table 2); more importantly,
however, was the introduction of two three-
dimensional (3-D) trench charge storage capacitors
(see Figures 9 and 10). Sah has noted that the goal of
these 3-D capacitor designs was to reduce the planar
area of the storage capacitor while maintaining the
storage capacitance at more than 32 fF to hold more
than 106 electrons at a VDD of 5V to limit soft errors
[44]. In the stack capacitor design, multilayers of
conductors (poly Si or Al) and insulators (silicon
dioxide and silicon nitride) are stacked on top of the
pass transistor. In the trench capacitor design, a trench
is etched in the silicon and an MOS storage capacitor
is fabricated in the trench, adjacent to the pass
transistor which remains on the planar surface. In this

case, the trench depth is about 10 jum and the spatial
area is about 6-9 Jim2. Chatterjee and colleagues at
Texas Instruments introduced a structure which placed
the pass transistor inside the trench to further conserve
silicon real estate [300,301].

The 4M DRAM era introduced the sub-micron
design rule regime at 0.8 ju,m with 3-D storage
capacitors. The types and features of storage cell
designs have subsequently proliferated [44,302,303].
The decreasing design rules result in higher speed
and reduced power-delay product as a result of lower
capacitance and current [44]. The power-delay
product is additionally reduced by reducing VDD [44].

The DRAM became the test vehicle par
excellence to advance the silicon 1C process
technology because of its repetitive memory
structure. In more recent years, however, especially
after the U.S. makers retreated from a significant
position in the manufacture of DRAMS, their
expertise in the fabrication of microprocessors has
propelled the logic and microprocessor family as test
vehicle drivers. Nevertheless, the DRAM continues
to drive the extendibility of personal computers (PCs)
vis-a-vis the memory content.

Integrated Circuit Scaling
Gordon Moore's remarkedly prescient assessment

of memory component growth in 1965, initially based
on bipolar and then MOS memory density, observed
that a semilog graph of the number of bits on a memory
1C versus the date of initial availability was a straight
line, representing almost a doubling per year [50-53].
Accordingly, a quadrupling was deduced every two
years (consistent with the needs of the system houses)
and subsequently modified to ~ 3 years around the mid-
later 1970s and currently taken as 3-4 years based on a
1995 assessment [53]. This analysis became enshrined as

Figure 9. One Mbit CMOS DRAM chip, courtesy of Texas Instruments Incorporated.

26



Moore's law and became the productivity criterion by
which the 1C industry grew at ~ 16% compound annual
growth rate (CAGR), facilitated by the availability of
larger-diameter silicon single crystals to support the
requisite larger chip sizes.

achieved. The cost effectiveness of international
standards for emerging technologies such as SOI and
300 mm diameter wafers, in conjunction with the
cost-effective production of ICs, such as computer-
based design for manufacturability, will offer

Figure 10. 16 Mbit DRAM cell, courtesy of Texas Instruments Incorporated.

The phenomenal growth of the 1C industry,
achieved by staying on the "productivity learning
curve," continues to be the gauge by which the
industry is measured [55,304]. This is evidenced by
the cost per bit or logic function historically declining
at ~ 16% CAGR for the past several decades. This
growth has been fueled by four factors; shrinking
lithographic design rules, yield improvements,
increased equipment utilization and larger wafer
diameter. The largest opportunity growth factor to
maintain the 1C productivity engine and continue on
the productivity curve as described by Moore's law
appears to be increased equipment effectiveness; that
is, the percentage of time the equipment is adding
value to the wafer. The largest challenge to
maintaining the productivity curve, however, may be
the enormous financial infrastructure required, rather
than technological limits to chip density. In that
regard, business and manufacturing ideas will
become increasingly important to ensure that the
long-term productivity growth of the semiconductor
industry maintains its growth near historical levels
for the next ten years. More than just monitoring
productivity, whether by staying on the productivity
curve or increasing manufacturing effectiveness,
however, is required. Rather, modeling
productivity—the identification of new productivity
measures—is required [56]. Global specifications,
metrology and standards, in addition to CoO
opportunities discussed earlier, are important
mechanisms to ensure the marketplace reality of the
ITRS roadmap trends, based on Moore's law, is

significant opportunities for an improved quality of
life for the world's citizens. An even greater
challenge to maintaining the productivity curve,
however, may be the enormous financial
infrastructure required, rather than technological
limits to chip density [7,305]. This more recent
development, regarding the escalating cost of
building the 1C fabrication facility, has been
described, somewhat erroneously, as Moore's second
law [306]. Indeed, a state-of-the-art 1C fab producing
65 nm physical gate length MOSFET ICs (130 nm
technology generation) is about $2.5B (U.S.). The
financial investment for implementation of the 300
mm and 450 mm wafer eras will certainly exacerbate
this concern. Accordingly, ingenious engineering
advancements to ensure the requisite number of chips
per wafer (currently 200 mm in mainstream
manufacturing) without introducing the next wafer
diameter size, (i.e., 300 mm and, eventually,
450mm) with the requisite increased chip
performance, continues unabated. Nevertheless, the
onset of the 300 mm era has begun for those 1C
manufacturers who anticipate a distinct cost
advantage in going to the larger diameter wafer.

Device scaling has been the engine driving this
revolution, based in large part on Robert Dennard's
one-transistor memory cell introduced in 1968 [45].
The one-transistor/one-capacitor (IT) cell, in
conjunction with the scaling methodology introduced
by Dennard et al. in 1974 [46-49] (i.e., reduction in
design rules without compromising the current-
voltage characteristics) established the paradigm by
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which enhanced scaling has progressed and
facilitated the explosive growth and applications of
the MOSFET 1C. The original scaling methodology,
based on constant electric field scaling principles,
was generalized in 1984 to allow the voltage to be
scaled less rapidly than the dimensions by increasing
the electric field (with its own scaling factor) [46-49]
(see Table 3). Major scaling contributions have

same, even if the field e. increases, and that
the threshold voltage, Vt, is scaled down by
the same factor as the applied voltage, VDD.
The active power for a given circuit scales as
82/adaw while the power density scales as
e2/ocw/ad, assuming that the clock frequency
does indeed increase by ad and that the same
circuit designs are used."

Table 3: Generalized Scaling Approach [49]. Reproduced by permission of The Electrochemical Society, Inc.
Physical Parameter

Channel length, L

Gate insulator, TOx

Voltage, V

Wiring width

Channel width, W

Circuit speed (goal)

Circuit power

Generalized Scaling Factor

1/Od

1/Od

e/ccd

l/aw

l/aw

ad

82 /ad aw

occurred in the reductions of gate dielectric
thickness, physical gate length and extension junction
depth, as discussed by Dennard and colleagues via
constant electric-field scaling and, subsequently,
constant voltage scaling [47-49]. Dennard has
recently summarized several aspects of the
generalized scaling relationships [49]:

"The original constant-electric-field scaling
principles which we introduced in the early
1970's were generalized in the 1980's to
allow voltages to be scaled less rapidly than
dimensions by increasing the electric field,
which has its own scaling factor 8 [47-49].
Another generalization can be made by
allowing some basic device parameters and
the interconnecting wire dimensions to be
scaled down by different factors.

With these changes, our current view of
scaling is shown in Table 3. Most device
physical dimensions are divided by a factor
of ad and the voltage is scaled down by ad
but multiplied by the factor 8. as discussed
above. The wiring dimensions and the device
width are divided by a factor aw. A
reasonable goal is to increase the circuit
speed by a factor ad, which assumes that the
average carrier velocity remains about the

Evolving Directions

The gate dielectric thickness, physical gate
length and extension junction depth parameters were
empirically related in 1980 by Simon Sze and
colleagues [307] to ensure the retention of long-
channel behavior (i.e., no short-channel effects, such
as Vt roll-off). For example, consider the scaling of
the Kbit DRAM from the early 1970s (4K DRAM) to
today's leadership, high-performance MPU part
appropriate for the 90 nm technology generation in
2003 [55]. The SiO2 gate dielectric has decreased
from the range of about 50-100 nm for the 4K
DRAM to an anticipated value of about 1.2 nm oxide
equivalent thickness (EOT) for the MPU part [55].
Likewise, the physical gate length has decreased
from 7.5 Jim for the 4K DRAM to a physical gate
length of about 45 nm for the MPU part at the 90 nm
technology generation [55]. Finally, the junction
depth has decreased from several microns for the 4K
DRAM to about 20 nm for the extension junction
depth for the MPU part at the 90 nm technology
generation [55]. In a related fashion, the critical
figure of merit for transistor speed, CV/7, has become
less than one psec for an NMOSFET and typically
approaching one psec (or slightly less) for a
PMOSFET, as the MOS physical gate length has
decreased from 30 nm to 10 nm, the latter dimension
being appropriate for the 64G DRAM and 9 G high-

28



performance logic era in 2016 [55]. It is anticipated
that the "silicon age" of 1C microelectronics has a
sufficiently robust, but challenging future.

Scaling of the gate dielectric SiO2 to the sub-
2 nm regime, however, has exacerbated the occurrence
of direct tunneling [308,309] as described by Yuan
Taur and colleagues. An extensive global effort is in
progress by numerous personnel [310-315] to identify
an alternative, high-dielectric constant material to
circumvent the gate dielectric direct tunneling leakage
current when the silicon oxynitride gate dielectric
physical thickness is less than about 1.2 nm for high
performance microprocessors, including the relevant
diagnostic techniques [8]. Additionally, the importance
of gate electrodes (eventually requiring dual metal
gates with differing work functions for CMOS
optimization or a single, tunable work function metal)
and the issues of incorporating the gate stack into an
integrated, conventional planar, initially poly
electrode, 1C process flow has been noted [315]. Al
Tasch has clarified the role of the quantum
confinement effect in silicon in increasing the effective
dielectric thickness of a MOSFET in inversion [316],
which cannot be avoided as compared to the poly-
depletion effect in the polysilicon gate electrode,
which can be negated by utilizing metal gate
electrodes. In that regard, the dual metal system with
differing work functions is under consideration as the
gate electrodes for optimal CMOS performance [55].

Concurrently, a host of studies are in progress to
identify an ultrashallow junction fabrication
methodology consonant with the sub-90 nm
technology generations [55,317]. These studies may be
grouped under the classification as classical CMOS
structures. On the other hand, a plethora of non-
classical CMOS devices are under consideration
wherein a unique combination of materials and/or
device structural configurations may differ from the
conventional or classical planar CMOS structure
[55,57]. Of particular importance is the assessment of
alternate channels for enhancement of the n- and p-
channel mobility, ranging from strained silicon on
unstrained Si-Ge on SOI, silicon-germanium on silicon
and a host of alternative vertical transistor structural
configurations [318,319] as well as the semi-ballistic
transistor [320].

Accordingly, silicon MOSFET's may be
expected to scale in an essentially predictable manner
from the present state-of-the-art 90 nm technology
generation (MPU physical gate length of 45 nm) to the
22 nm technology generation (MPU physical gate
length of 9 nm) [55]. Concurrently, the 1C industry has
continually seen that the ingenuity of device and
process engineers to develop unique device
geometries, from the early DRAM era [44] and, more
recently, non-classical CMOS devices including

vertical transistor configurations or double-gate
structures utilizing SOI as appropriate, novel process
technologies and models to guide further development
may be more influential to 1C growth and device
performance than might be inferred from the
extrapolation of today's art [57,321,322] and may offer
significant unforeseen opportunities. The ubiquitous
applicability of Si technology in the information
revolution, touching numerous aspects of the lives of
the worlds' citizens, however, may not necessarily
require the state-of-the-art technologies in all
applications [7,8]. It is unlikely, moreover, that the
present worldwide silicon infrastructure will be
regenerated to support a silicon successor [323].
Accordingly, silicon technology is expected to
continue as the most powerful driver of the
information age for at least the next 100 years, albeit in
conjunction with complementary, alternative device
structures.
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